$$ t_{\textrm{smp-pulse}}= \begin{cases} N_{1,\textrm{c}}t_{\textrm{s}}&(\textrm{for } N_1\ge2)\\ \displaystyle\frac{1}2t_{\textrm{s}}&(\textrm{for } N_1=1) \end{cases} $$

$$ t_{\textrm{h,i}}=N_1N_2t_s-2t_{\textrm{smp-pulse}} $$

$$ t_{\textrm{h,i}}= \begin{cases} (N1N2-2N_{1,\textrm{c}})t_{\textrm{s}}&(\textrm{for } N_1\ge2)\\ (N1N2-1)t_{\textrm{s}}&(\textrm{for } N_1=1) \end{cases} $$

$$ t_{\textrm{h,i}}= \begin{cases} (N1-N_{1,\textrm{c}})t_{\textrm{s}}&(\textrm{for } N_1\ge2)\\ \displaystyle\frac{1}{2}t_{\textrm{s}}&(\textrm{for } N_1=1) \end{cases} $$

$$ \frac{V_\textrm{2,d}}{V_\textrm{i}}=\frac{1}{(1+sR_2C_2)(1+sR_0C_0)+sR_0C_2} $$

$$ t_{\textrm{h,d}}=N_1t_s-t_{\textrm{smp-pulse}} $$

  1. ppt : 4 학년 2학기 adc 쪽에 있음.

  2. 논문

    Abstract

    [Implementation: 2 highly interleaved analog-to-digital converters(ADCs)]

    Section 2 : High-Speed, Low-Power ADCs: fundamental ADC limits & Design Tradeoffs

    A. Interleaved ADCs Requirements (High-speed)

    B. Noise and Distortion Budget of an ADC

    (1) SNDR(signal-to-noise and distortion ratio): A(amplitude of input signal), $V_{i,pp-diff}$(maximum peak-peak differential input voltage), N(resolution of ADCs), $\sigma_{DNL}$ & $\sigma_{INL}$(standard deviation of DNL and INL in LSBs), $f_in$(input frequency), $\sigma_j$(std of timing jitter in seconds), $\sigma_n$(std of thermal noise in ADCs) ⇒effects from time interleaving 은 (1)식에 포함 X

    $$ SNDR_{tot}= 10\log{\frac{\frac{1}{2}A^2}{\frac{V^2_{i,pp-diff}}{2^{2N}}(\frac{1}{12}+\frac{1}{4}{\sigma_{DNL}^2}+\sigma_{DNL}^2)+(\sqrt2\pi f_{in}A\sigma_j)^2+\sigma_n^2}} $$

    (2) SNDR limit from jitter

    $$ SNDR_{jitter}=-20\log(2\pi f_{in}\sigma_j) $$

    Section 3 : Voltage-based time-interleaving architectures for high-speed ADCs (+resolution high 여도 ok )

    A. Voltage-Based Interleaver Architectures

    Fig. 1. Direct sampling with buffered subsampling [2] . Waveforms are shown for 50% duty cycle clocking

    Untitled

    1. provide shortest path from input to sampling CAP with minimum resistance
    2. 1개 이상 sampling switch 가 동시에 closed
    3. 1개의 sampling switch만 close 되면 highest bandwidth but shortest sampling pulsed required
    4. 너무 많은 스위치 달리면 Vi 에 input capacitance 증가
    5. sampled voltage 는 Cs에 보관되고 forwared through a buffer and demux structure to sampling capacitor of sub-ADC $C_{s,ADC}$

    Fig. 2. Inline demux sampling with buffered subsampling [4] .

    Untitled

    1. stack 2 switches to reduce the number of parallel switches at the input
    2. 닫히는 순서: lnline demux switch ⇒ Sampling switch
    3. 열리는 순서 : Sampling switch ⇒ lnline demux switch
    4. 결국 sampling time 은 오직 sampling switch clock 의 falling edge에만 영향
    5. Inline demux switch : timing critical clock signal 의 수를 현저히 감소

    B. Interleaver Model

    C. Inline Demux Sampling Model

    Fig. 5.

    RC equivalent of the inline demux interleaver from Fig. 4.

    Section 4 : Implementation and measurement results of high-speed CMOS ADC at 90 GS/s & 8 bit resolution(667 mW power consumption) + low-power implementation at 36 GS/s & 6 bit resolution(100 mW power consumption)