$$ t_{\textrm{smp-pulse}}= \begin{cases} N_{1,\textrm{c}}t_{\textrm{s}}&(\textrm{for } N_1\ge2)\\ \displaystyle\frac{1}2t_{\textrm{s}}&(\textrm{for } N_1=1) \end{cases} $$
$$ t_{\textrm{h,i}}=N_1N_2t_s-2t_{\textrm{smp-pulse}} $$
$$ t_{\textrm{h,i}}= \begin{cases} (N1N2-2N_{1,\textrm{c}})t_{\textrm{s}}&(\textrm{for } N_1\ge2)\\ (N1N2-1)t_{\textrm{s}}&(\textrm{for } N_1=1) \end{cases} $$
$$ t_{\textrm{h,i}}= \begin{cases} (N1-N_{1,\textrm{c}})t_{\textrm{s}}&(\textrm{for } N_1\ge2)\\ \displaystyle\frac{1}{2}t_{\textrm{s}}&(\textrm{for } N_1=1) \end{cases} $$
$$ \frac{V_\textrm{2,d}}{V_\textrm{i}}=\frac{1}{(1+sR_2C_2)(1+sR_0C_0)+sR_0C_2} $$
$$ t_{\textrm{h,d}}=N_1t_s-t_{\textrm{smp-pulse}} $$
ppt : 4 학년 2학기 adc 쪽에 있음.
Abstract
[Implementation: 2 highly interleaved analog-to-digital converters(ADCs)]
필요성 : communication require faster converters + CMOS 공정이 더 이상 significant speed advantages X , emerging wired communication standard 는 ADCs 에 build 됨. 점점 더 same band 에서 data rate 를 올려서 higher-order modulation 을 할 것이다. 즉 ADCs with at least 8 bit resolution at high sampling rate 가 지속적으로 성장할 것이다.
그래서 8 bit 이상 resolution 을 위해 뭐가 효율적이냐 : SAR ADCs ⇒장점: flexible architecture, power efficiency, suitability for digital CMOS process. 즉, low total number of comparisons to determine the digital output + absence of amplification during conversion(amp 는 pipelined ADCs의 특징, amp의 부재로 인해 low supply voltage 에서 converter가 동작)단점: slower clock rate.
Time-interleaved front end sampler + SAR ADCs ⇒ High speed converter ⇒ TI- ADCs 디자인은 divide-and-conquer approach 채택(power and area 가 sub-ADC에 의해 결정됨. speed & bandwidth & interleaving accuracy 는 front end interleaver(-analog input signal demultiplexing structure 이며 sampling stage + buffter 로 구성)에 의해 결정)
ADCs architecture | 6bit | 8bit |
---|---|---|
input bandwidth | > 20GHz | > 20GHz |
inline demux sampling | 32X interleaving | 64X interleaving |
sampling rate | 36GS/s at 110mW | 90GS/s at 667mW |
SNDR | above 31.6 dB at 36 GHz(Nyquist) | above 36 dB up to 6.1 GHz, above 33 dB up to 19.9 GHz |
Area | $0.048 mm^2$ | $0.45 mm^2$ |
Section 2 : High-Speed, Low-Power ADCs: fundamental ADC limits & Design Tradeoffs
A. Interleaved ADCs Requirements (High-speed)
enables the separation of ADC requriements (Interleaver 용 // sub-ADCs 용)
→ 둘 다 total noise budget 에 기여(ADC 가 higher speed & precision requirement 일수록, interleaver 에 더 많은 noise budget 이 할당되어야 함-interleaver 가 technology constraint 에 의해 더 강하게 bound 됨)
→ skew and BW mismatch 는 오직 first sampling stage 에만 영향을 주고, gain mismatch and offset 은 sub-ADCs 에도 영향을 줄 수 있음(차이 확인!)
B. Noise and Distortion Budget of an ADC
(1) SNDR(signal-to-noise and distortion ratio): A(amplitude of input signal), $V_{i,pp-diff}$(maximum peak-peak differential input voltage), N(resolution of ADCs), $\sigma_{DNL}$ & $\sigma_{INL}$(standard deviation of DNL and INL in LSBs), $f_in$(input frequency), $\sigma_j$(std of timing jitter in seconds), $\sigma_n$(std of thermal noise in ADCs) ⇒effects from time interleaving 은 (1)식에 포함 X
$$ SNDR_{tot}= 10\log{\frac{\frac{1}{2}A^2}{\frac{V^2_{i,pp-diff}}{2^{2N}}(\frac{1}{12}+\frac{1}{4}{\sigma_{DNL}^2}+\sigma_{DNL}^2)+(\sqrt2\pi f_{in}A\sigma_j)^2+\sigma_n^2}} $$
(2) SNDR limit from jitter
$$ SNDR_{jitter}=-20\log(2\pi f_{in}\sigma_j) $$
Section 3 : Voltage-based time-interleaving architectures for high-speed ADCs (+resolution high 여도 ok )
A. Voltage-Based Interleaver Architectures
direct sampling & inline demux sampling 으로 catagorize⇒ 둘 다 implement subsampling for larger interleaving ratio
Direct Sampling:
Fig. 1. Direct sampling with buffered subsampling [2] . Waveforms are shown for 50% duty cycle clocking
Fig. 2. Inline demux sampling with buffered subsampling [4] .
B. Interleaver Model
Fig. 3. Simplified switch model
total gate capacitance (= drain cap + source cap + bulk cap)
on-resistance of the switch
drain cap 과 source cap은 constant(independant of gate voltage)라 가정하고, leakage from sampling cap in switch-off state 는 없다 가정
transition frequency 는 gate cap과 on-resistance of the switch 로 표현 가능
effective transition frequency = p* transition frequency
p = correction factor = $\frac{ due\ to\ wiring\ of\ a\ sampling\ switch}{due\ to\ without\ wiring\ of\ a\ sampling\ switch} of\ parasitic\ capacitance\ + R_{on}$ = or by simulating the transfer function of inter leaver and fitting p
(동일한 기술로 만든 difference interleaver는 p 거의 동일)
C. Inline Demux Sampling Model
Fig. 5.
RC equivalent of the inline demux interleaver from Fig. 4.
Section 4 : Implementation and measurement results of high-speed CMOS ADC at 90 GS/s & 8 bit resolution(667 mW power consumption) + low-power implementation at 36 GS/s & 6 bit resolution(100 mW power consumption)